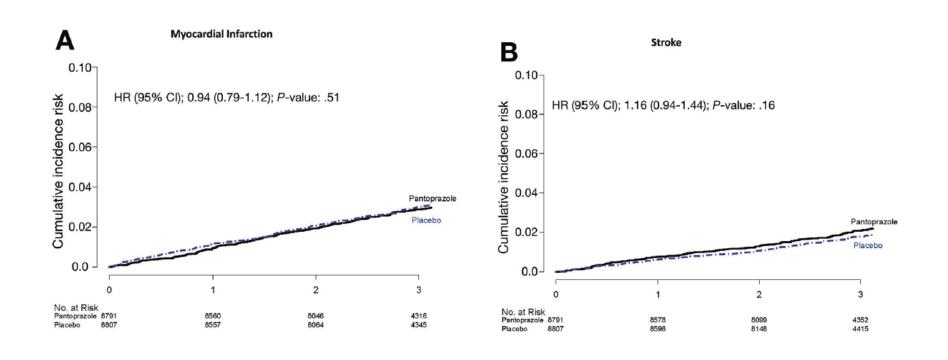


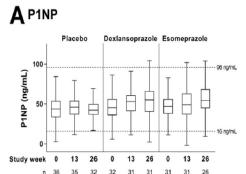
Dyspepsie, Ulkuserkrankungen, Helicobacter pylori

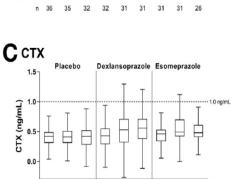

Safety of Proton Pump Inhibitors in a Randomized Trial of Patients Receiving Rivaroxaban or Aspirin

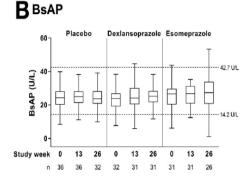
- **Methods:** 3x2 partial factorial double-blind trial; 17,598 patients with stable cardiovascular disease and peripheral artery disease
- Rivaroxaban (2.5mg bid) + aspirin (100mg od) versus rivaroxaban (5mg bid) versus aspirin (100mg od)
- Pantoprazol 40mg 1x1 versus placebo

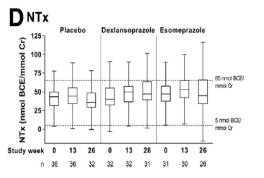
Safety of Proton Pump Inhibitors in a Randomized Trial of Patients Receiving Rivaroxaban or Aspirin

Safety of Proton Pump Inhibitors in a Randomized Trial of Patients Receiving Rivaroxaban or Aspirin

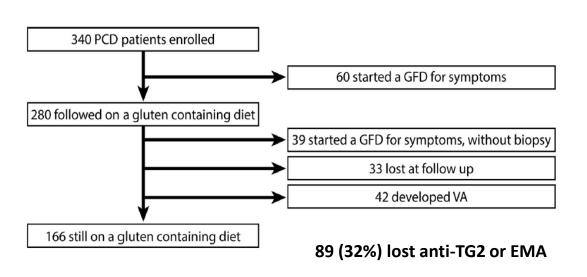

Other prespecified safety outcomes

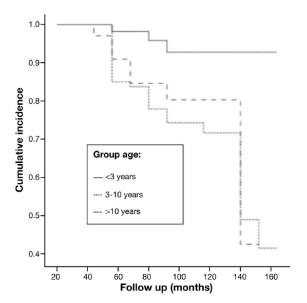

	Incident events, n	(%)	Pantoprazole, 40 mg od, vs placebo		
Outcome	Pantoprazole, 40 mg od (n = 8791)	Placebo (n = 8807)	OR (95% CI)	P value	
Gastric atrophy	19 (0.2)	26 (0.3)	0.73 (0.40–1.32)	.30	
Clostridium difficile	9 (0.1)	4 (<0.1)	2.26 (0.70-7.34)	.18	
Other enteric infection	119 (1.4)	90 (1.0)	1.33 (1.01–1.75)	.04	
Chronic kidney disease	184 (2.1)	158 (1.8)	1.17 (0.94–1.45)	.15	
Dementia	55 (0.6)	46 (0.5)	1.20 (0.81-1.78)	.36	
Pneumonia	318 (3.6)	313 (3.6)	1.02 (0.87–1.19)	.82	
Fracture	203 (2.3)	211 (2.4)	0.96 (0.79–1.17)	.71	
COPD	146 (1.7)	124 (1.4)	1.18 (0.93–1.51)	.17	
Diabetes mellitus	513 (5.8)	532 (6.0)	0.96 (0.85–1.09)	.56	

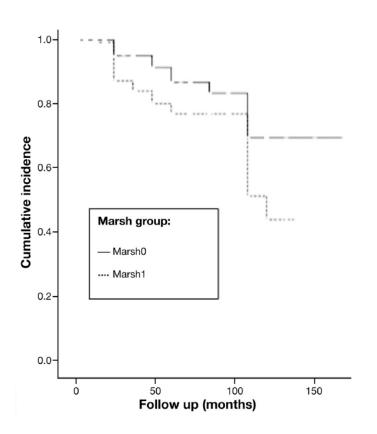

COPD, chronic obstructive pulmonary disease; od, once daily.


Dexlansoprazole and Esomeprazole Do Not Affect Bone Homeostasis in Healthy Postmenopausal Women

- Design: prospective, multicenter, doubleblind
- Patients: 115 healthy postmenopausal women
- Treatment: dexlansoprazole 60mg vs esomeprazole 40mg vs placebo for 26 weeks
- Results:
- PPI-groups had significantly increased levels of markers of bone turnover, although these levels remained within normal ranges
- No significant differences in BMD, PTH, serum or urine levels of minerals, or TFCA (true fraction calcium absorption)

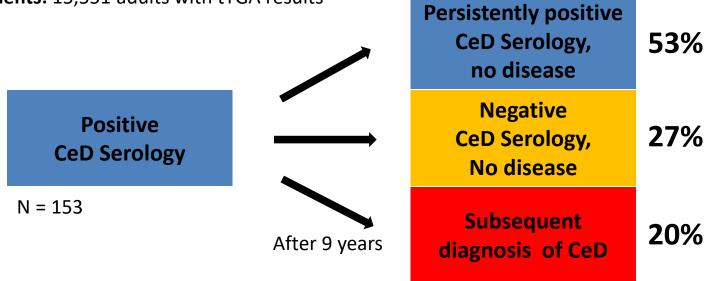




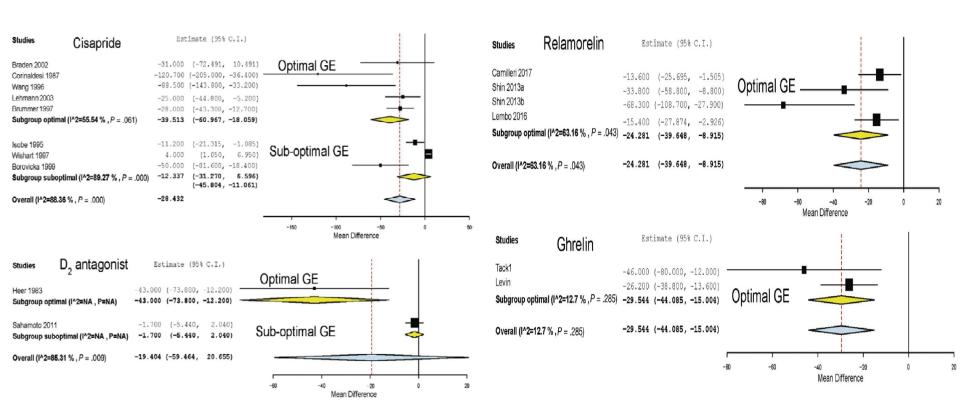

Progression to Celiac Disease in Children With Potential Celiac Disease

- Patients: children (2-18a) with tissue transglutaminase antibodies (anti-TG2) and endomysial antibodies (EMA) but normal duodenal architecture (Marsh stages 0-1); followed up to 12 years; all had HLA DQ2- or DQ8-positive haplotypes;
- Serologic tests and clinical analyses every 6 months; small bowel biopsies every 2 years

Progression to Celiac Disease in Children With Potential Celiac Disease

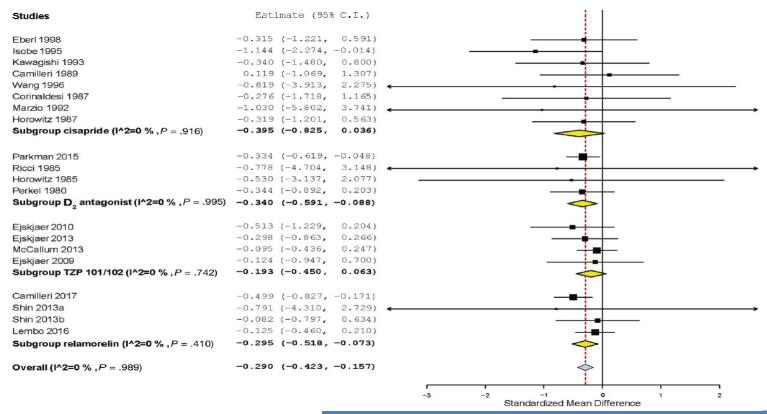


- Risk factors for developing celiac disease:
- numbers of γδ intraepithelial lymphocyte cells
- Age
- Homozygosity for the HLA DQB1*02


Community-Based Study of Celiac Disease Autoimmunity Progression in Adults

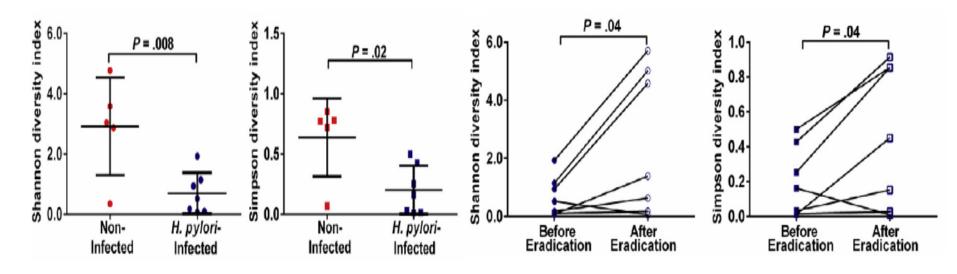
Design: prospective cohort study

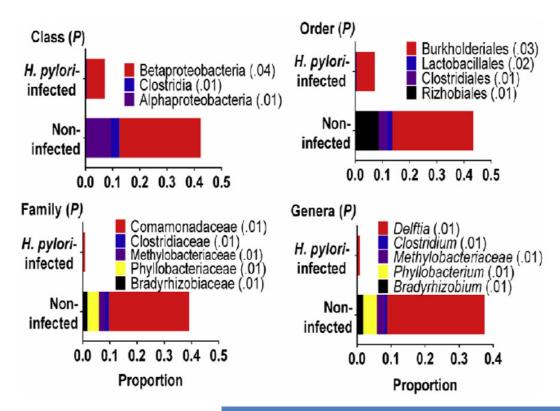
Patients: 15,551 adults with tTGA results



Effects of Promotility Agents on Gastric Emptying Meta-analysis

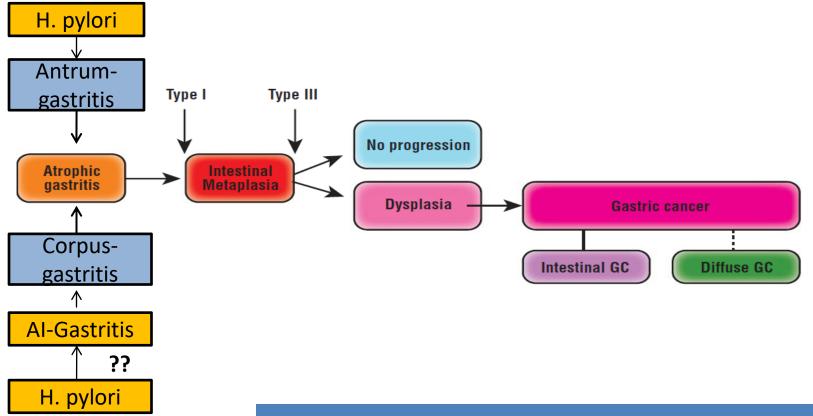
Vijayvargiya P et al. Gastroenterology 2019; 156: 1650-1660


Effects of Promotility Agents on Gastric Symptoms Meta-analysis


Vijayvargiya P et al. Gastroenterology 2019; 156: 1650-1660

Eradication of Helicobacter pylori in children restores the structure of the gastric bacterial community

- **Patients:** 16 children (≤13 years) from Venezuela with nausea and abdominal discomfort without antibiotic or antacid therapy during the preceding month
- Gastroscopy with biopsies, Hp urease test, histology and microbiota analysis
- 11 children were Hp-infected and treated with A+C+PPI for 14 days



Eradication of Helicobacter pylori in children restores the structure of the gastric bacterial community

Serrano CA et al. Gastroenterology 2019; 157: 1673-1675

Premalignant stages of gastric cancer ("Correa Cascade")

nach Busuttil RA et al. J Gastroenterol Hepatol 2009; 24: 193-201

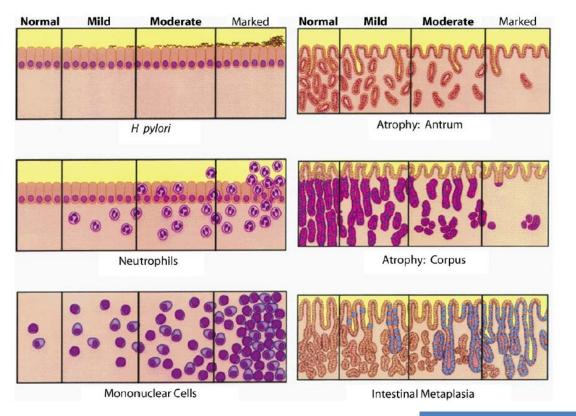
Grading of chronic gastritis according to OLGA

(Operative Link on Gastritis Assessment)

		CORPUS						
		No Atrophy (score 0)	Mild Atrophy (score 1)	Moderate Atrophy (score 2)	Severe Atrophy (score 3)			
	No Atrophy (score 0) (including <i>incisura angularis</i>)	STAGE 0	STAGE I	STAGE II	STAGE III			
N T	T (including incisura angularis)	STAGE I	STAGE II	STAGE II	STAGE III			
R U M	Moderate Atrophy (score 2) (including incisura angularis)	STAGE II	STAGE II	STAGE III	STAGE IV			
	Severe Atrophy (score 3) (including <i>incisura angularis</i>)	STAGE III	STAGE III	STAGE IV	STAGE IV			

Rugge M et al. Human Pathology 2005; 36: 228-233-587

Grading of chronic gastritis according to OLGIM


(Operative Link on Gastric Intestinal Metaplasia Assessment)

		Corpus					
	IM score	Not fat: no IM (score 0)	Mild IM (score 1)	Moderate IM (score 2)	Severe IM (score 3)		
Antrum (including incisura angularis)	No IM (score 0)	Stage 0	Stage I	Stage II	Stage II		
	Mild IM (score 1)	Stage I	Stage I	Stage II	Stage III		
	Moderate IM (score 2)	Stage II	Stage II	Stage III	Stage IV		
	Severe IM (score 3)	Stage III	Stage III	Stage IV	Stage IV		

IM, Intestinal metaplasia; OLGIM, operative link on gastric intestinal metaplasia assessment.

Grading of chronic gastritis according to OLGIM

(Operative Link on Gastric Intestinal Metaplasia Assessment)

Interobserver agreement (kappa values) for different stages of the OLGA and OLGIM staging systems

Stage(s)	OLGA	OLGIM
0-IV	0.38	0.58
0	0.56	0.88
1	0.19	0.48
II	0.29	0.31
III	0.36	0.48
IV	0.48	0.59
III-IV	0.48	0.61

OLGA, operative link on gastritis assessment; *OLGIM*, operative link on gastric intestinal metaplasia assessment.

Capelle LG et al. Gastrointest Endosc 2010; 71: 1150-1158

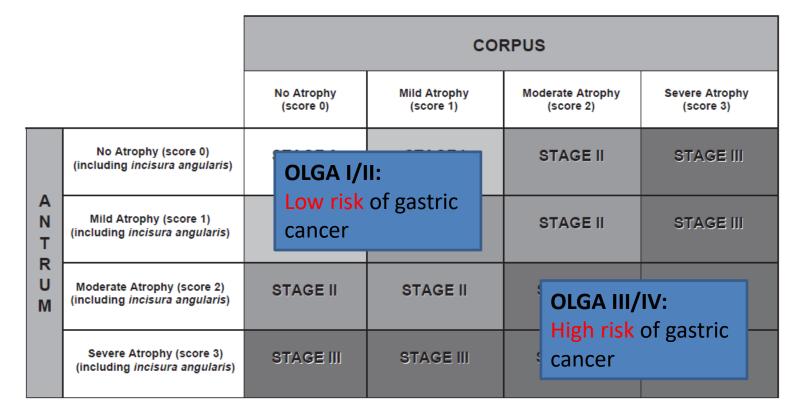
The significance of OLGA staging system in the risk assessment of gastric cancer

Forest plot of odds ratio (OR) for gastric cancer (GC) of high stage of OLGA versus low stage in case-control studies:

	Experim	ental	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Cho 2013	219	474	126	474	29.4%	2.37 [1.81, 3.11]	-
Choi 2012	223	483	127	483	29.5%	2.40 [1.83, 3.15]	-
Kodama 2013	8	21	11	66	8.3%	3.08 [1.03, 9.18]	
Satoh 2008	15	18	44	145	6.4%	11.48 [3.16, 41.66]	
Tsai 2013	7	43	10	48	8.6%	0.74 [0.25, 2.15]	
Zhou 2016	37	71	35	156	17.9%	3.76 [2.07, 6.85]	_ -
Total (95% CI)		1110		1372	100.0%	2.64 [1.84, 3.79]	•
Total events	509		353				
Heterogeneity. Tau ² =	0.10; Chi	$i^2 = 12.$	53, df =	5 (P =	0.03); I ²	= 60%	0.01 0.1 1 10 100
Test for overall effect:	Z = 5.30	(P < 0.	00001)				Favours [experimental] Favours [control]

The cumulative GC risk among patients with OLGA stage III/IV was 2.64 (95% CI 1.84-3.79; I²=60%; n=6)

The significance of OLGIM staging system in the risk assessment of gastric cancer


Forest plot of odds ratio (OR) for gastric cancer (GC) of high stage of OLGIM versus low stage in casecontrol studies:

	Experim	ental	Cont	rol		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
Cho 2013	204	474	69	474	70.6%	4.43 [3.24, 6.07]	-	
Tsai 2013	30	71	31	156	20.1%	2.95 [1.60, 5.45]		
Zhou 2016	17	43	9	48	9.2%	2.83 [1.10, 7.31]		
Total (95% CI)		588		678	100.0%	3.99 [3.05, 5.21]	•	
Total events	251		109					
Heterogeneity: Chi2 =	1.87, df	= 2 (P =	0.39); [$^{2} = 0\%$				$\overline{}$
Test for overall effect	Z = 10.1	7 (P < 0	0.00001)	Œ.			6.01 0.1 1 10 1 Favours [experimental] Favours [control]	00'

The cumulative GC risk among patients with OLGIM stage III/IV was 3.99 (95% CI 3.05-5.21; I²=0%; n=3)

Grading of chronic gastritis according to OLGA

(Operative Link on Gastritis Assessment)

Rugge M et al. Human Pathology 2005; 36: 228-233-587

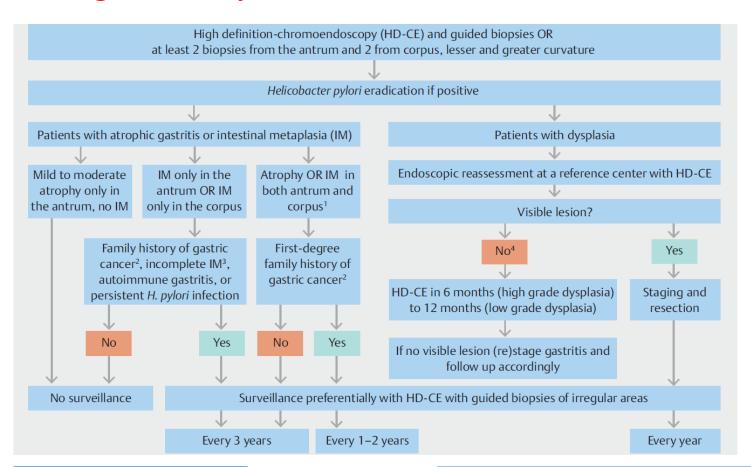
Grading of chronic gastritis according to OLGIM

(Operative Link on Gastric Intestinal Metaplasia Assessment)

			Corpus				
	IM score	Not fat: no IM (score 0)	Mild IM (score 1)	Moderate IM (score 2)	Severe IM (score 3)		
Antrum (including incisura angularis)	No IM (score 0)	OLGIM I/I		Stage II	Stage II		
	Mild IM (score 1)	Low risk o	il gastric	Stage II OLGIM II	I/IV:		
	Moderate IM (score 2)	Stage II	Stage II	st High risk cancer	of gastric		
	Severe IM (score 3)	Stage III	Stage III	Stage IV	Stage IV		

IM, Intestinal metaplasia; OLGIM, operative link on gastric intestinal metaplasia assessment.

Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) guideline update 2019



Authors

Pedro Pimentel-Nunes^{1,2,3}, Diogo Libânio^{1,2}, Ricardo Marcos-Pinto^{2,4}, Miguel Areia^{2,5}, Marcis Leja⁶, Gianluca Esposito⁷, Monica Garrido⁴, Ilze Kikuste⁶, Francis Megraud⁸, Tamara Matysiak-Budnik⁹, Bruno Annibale⁷, Jean-Marc Dumonceau¹⁰, Rita Barros^{11,12}, Jean-François Fléjou¹³, Fátima Carneiro^{11,12,14}, Jeanin E. van Hooft¹⁵, Ernst J. Kuipers¹⁶, Mario Dinis-Ribeiro^{1,2}

Management of precancerous conditions in the stomach (MAPS II)

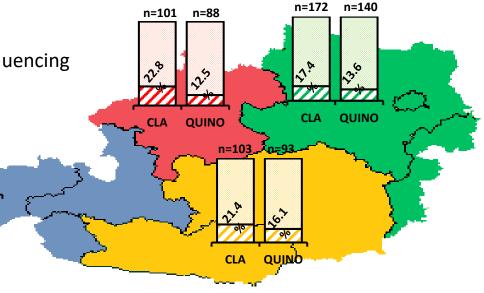
- 1) OLGA III/IV bzw. OLGIM III/IV
- Recommendations do not apply to hereditary diffuse gastric cancer
- Additional studies are required before subtyping of IM can routinely be recommended
- Slides should be sent to an expert gastrointestinal pathologist

Additional recommendations

- HD-endoscopy with chromoendoscopy (CE) is better than HD-white-lightendoscopy alone (alternative: virtual CE).
- Patients with a diagnosis of "indefinite for dysplasia/neoplasia" should be promptly referred to an expert endoscopy center.
- H.p. heals nonatrophic chronic gastritis, may lead to regression of atrophic gastritis, and reduces the risk of gastric cancer in patients with nonatrophic and atrophic gastritis; → H.p. eradication recommended.
- In patients with established IM, H.p. eradication does not appear to significantly reduce the risk of gastric cancer, but reduces inflammation and atrophy; → H.p. eradication should be considered.
- H.p. eradication reduces risk of recurrence after endoscopic resection of gastric neoplasia; → H.p. eradication recommended.

Prospective, multi-center clinical trial on geographic antimicrobial resistance patterns of Helicobacter pylori

ÖGGH Österreichische Gesellschaft für Gastroenterologie und Hepatologie


- 2000 patients included
 - Histopathological investigation: 515 HP+ (26%)
 - > 23S rRNA *H. pylori*-specific realtime PCR: 466 HP+ (90% confirmation rate of histology results)

n=61

QUINO

CLA

- Antimicrobial resistance testing
 - Clarithromycin: 23S rRNA gene amplification & melting point analysis
 Cla res. rate in Austria: 21.1%
 - Quinolone: gyrA gene amplification & sequencing Quino res. rate in Austria: 13.1%
- 2 biopsy samples from each patient (antrum & corpus)
 - HP infection in both sites of the stomach94.5%
 - HP infection only in antrum 2%
 - HP infection only in corpus 3.5%

Bilgilier C et al. Clin Microbiol Infect 2018; 24: 267-272

Impact of Previous Exposure to Macrolide Antibiotics on Helicobacter pylori Infection Treatment Outcomes

- Methods: Database analysis
- Patients: 7,842 patients with previous macrolide exposure
- **Primary endpoint:** effectiveness of clarithromycin-based triple therapy

Table 3. Predictors of eradication failure: multivariate analysis

Factor	OR (95% CI)	P
Previous macrolide exposure	1.79 (1.60–2.00)	< 0.0001
Charlson Comorbidity Index	1.09 (1.09–1.02)	< 0.0001
Age	0.97 (0.96–0.97)	< 0.0001
Female sex	0.96 (0.85–1.08)	0.481
Smoking	0.96 (0.78–1.16)	0.840
Low SES	0.97 (0.84–1.13)	0.899
SES, socioeconomic status.		

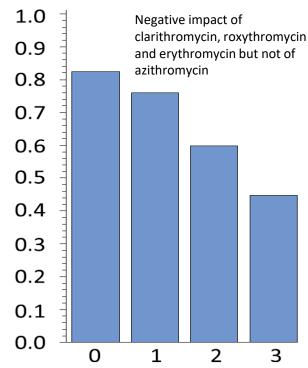


Figure 4. Odds of successful eradication of *H. pylori* among subjects with previous exposure to multiple (0–3) classes of macrolide antibiotics.

Management of *Helicobacter pylori* infection—the Maastricht V/Florence Consensus Report

P Malfertheiner, ¹ F Megraud, ² C A O'Morain, ³ J P Gisbert, ^{4,5} E J Kuipers, ⁶ A T Axon, ⁷ F Bazzoli, ⁸ A Gasbarrini, ⁹ J Atherton, ¹⁰ D Y Graham, ¹¹ R Hunt, ^{12,13} P Moayyedi, ¹⁴ T Rokkas, ¹⁵ M Rugge, ¹⁶ M Selgrad, ¹⁷ S Suerbaum, ¹⁸ K Sugano, ¹⁹ E M El-Omar, ²⁰ on behalf of the European Helicobacter and Microbiota Study Group and Consensus panel

Gut 2017; 66(1): 6-30

Gastroenterology 2016;151:51-69

CONSENSUS STATEMENT

The Toronto Consensus for the Treatment of *Helicobacter pylori* Infection in Adults

Carlo A. Fallone, ¹ Naoki Chiba, ^{2,3} Sander Veldhuyzen van Zanten, ⁴ Lori Fischbach, ⁵ Javier P. Gisbert, ⁶ Richard H. Hunt, ^{3,7} Nicola L. Jones, ⁸ Craig Render, ⁹ Grigorios I. Leontiadis, ^{3,7} Paul Moayyedi, ^{3,7} and John K. Marshall ^{3,7}

¹Division of Gastroenterology, McGill University Health Centre, McGill University, Montreal, Quebec, Canada; ²Guelph GI and Surgery Clinic, Guelph, Ontario, Canada; ³Division of Gastroenterology, McMaster University, Hamilton, Ontario, Canada; ⁴Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; ⁵Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; ⁶Gastroenterology Service, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; ⁷Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; ⁸Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Departments of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada; and ⁹Kelowna General Hospital, Kelowna, British Columbia, Canada

H.p.-Eradikation 2019 bei hoher Clarithromycinresistenz

Amoxicillin 2 x 1000 mg plus Clarithromycin 2 x 500 mg plus Metronidazol 2 x 500 mg plus PPI 2 x 1

Pylera[®] Kapseln 4 x 3 Kapseln täglich (1 Kapsel = 140mg Bismuth subcitrat, 125mg Metronidazol, 125mg Tetracyclin) plus PPI 2 x 1

Therapiedauer: 14 Tage

Therapiedauer: 10 Tage

Modified Dual Therapy vs Bismuth-Containing Quadruple Therapy as a First-line Treatment of H.p.-Eradication

- **Design:** open-label, randomized
- Patients: 232 Chinese H.p.-positive, treatment-naive patients
- **Treatment:** Amoxicillin 750mg 4x1 + Omeprazol 20mg 4x1 versus bismuth-containing quadruple therapy
- Treatment duration: 14 days

Table 2. Eradication rates of modified dual therapy compared with bismuth-containing quadruple therapy

	Modified dual group	Bismuth-containing quadruple group	Difference from quadruple group (adjusted 95% CI for difference)	<i>P</i> value for noninferiority ^a	<i>P</i> value for difference ^b
ITT	87.9% (102/116)	89.7% (104/116)	-1.72%	0.0228	0.677
95% CI	82.0%–93.9%	84.1%–95.2%	-9.84% to 6.39%		
MITT	91.1% (102/112)	90.4% (104/115)	0.64%	0.0028	0.869
95% CI	85.8%–96.4%	85.1%–95.8%	-6.90% to 8.17%		
PP	91.1% (102/112)	91.2% (104/114)	-0.16 %	0.0046	0.967
95% CI	85.8%–96.4%	86.0%–96.4%	-7.56% to 7.25%		

CI, confidence interval; ITT, intention-to-treat; MITT, modified intention-to-treat; PP, per-protocol.

^aThe *P* values were obtained from one-sided test comparisons of noninferiority between the modified dual therapy group and bismuth-containing quadruple therapy group.

^bThe *P* values were from two-sided comparisons of differences between the modified dual therapy group and the bismuth-containing quadruple therapy group.

Modified Dual Therapy vs Bismuth-Containing Quadruple Therapy as a First-line Treatment of H.p.-Eradication

Table 5. Drug-induced adverse effects and patient adherence to modified dual therapy compared with bismuth-containing quadruple therapy

	Modified dual group	Bismuth- containing quadruple group	<i>P</i> value
Adverse events	6.3% (7/112)	22.8% (26/114)	< 0.001
Nausea	2.7% (3/112)	1.8% (2/114)	0.682
Diarrhea	0.9% (1/112)	0.9% (1/114)	1.000
Dizziness	0	0.9% (1/114)	1.000
Taste distortion	0	12.3% (14/114)	< 0.001
Skin rash	0	0.9% (1/114)	1.000
Tongue discolouration	0.9% (1/112)	2.6% (3/114)	0.622
Darkened stool	0	2.6% (3/114)	0.247
Others	1.8% (2/112)	0.9% (1/114)	0.620
Discontinued drugs because of adverse events	0	1.7% (2/116)	0.498
Compliance	96.6% (112/ 116)	98.3% (114/116)	0.683

Adverse events were assessed in the per protocol (PP) population. Compliance was indicative of patients who took at least 80% of study drugs. NA. not applicable.

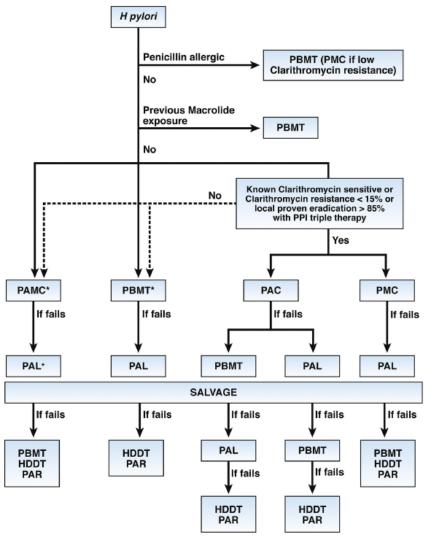
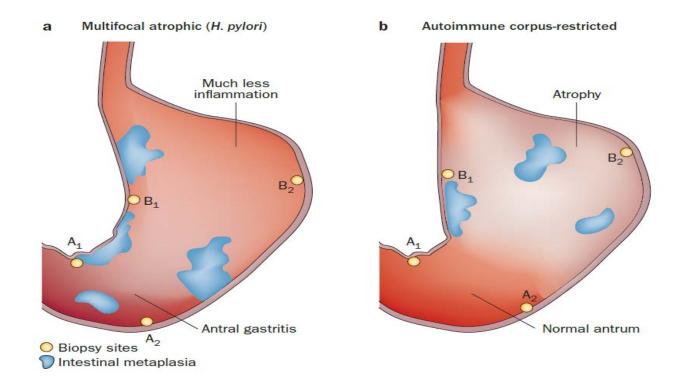
Table 4. Antibiotic resistance rates in the modified dual therapy group compared with the bismuth-containing quadruple therapy

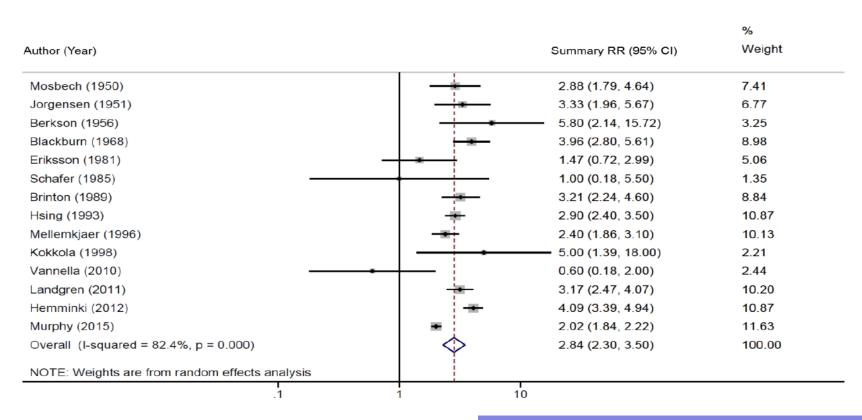
	Modified dual group (n = 116)	Bismuth- containing quadruple group (n = 116)	<i>P</i> value
Clarithromycin resistance (phenotypic)	48 (41.4)	21 (18.1)	< 0.001
Amoxicillin resistance (phenotypic)	0	0	NA
Metronidazole resistance (phenotypic)	110 (94.8)	114 (98.3)	0.280
Levofloxacin resistance (phenotypic)	48 (41.4)	40 (34.5)	0.279
Tetracycline resistance (phenotypic)	0	0	NA
Furazolidone resistance (phenotypic)	0	0	NA
Dual resistance (phenotypic)			
CLA-R/MTZ-R	47 (40.5)	21 (18.1)	< 0.001
CLA-R/LEV-R	24 (20.7)	8 (6.9)	0.002
MTZ-R/LEV-R	44 (37.9)	40 (34.5)	0.585
Triple resistance (phenotypic)			
CLA-R/MTZ-R/LEV-R	23 (19.8)	8 (6.9)	0.004
Data are expressed as number of subjects	with percenta	ge included in	

Data are expressed as number of subjects with percentage included in parentheses.

NA, not applicable.

Reconciliation of
H.p. Treatment
Guidelines in a Time
of Increasing
Resistance to
Antibiotics


Figure 1. Algorithm for eradication Adopted from Fallone PBMT. bismuth quadruple therapy; PMC, clarithromycin-based PPI therapy metronidazole: PAMC. concomitant non-bismuth quadruple therapy; PAC, clarithromycin-based PPI triple therapy with amoxicillin: PAL. levofloxacinbased therapy: HDDT. high-dose dual therapy; PAR. rifabutin-containing therapy. preferred when dual resistance to metronidazole and clarithromycin is susand PAMC is preferred if bismuth is not available. +Given rapidly increasing resistance certain areas, susceptibility testing if available is recommended before using PAL

Fallone CA et al. GE 2019; 157: 44-53

Atrophy in H.p.-gastritis versus autoimmune gastritis

Realtive risk (RR) and 95% confidence interval (CI) for gastric cancer among individuals with pernicious anemia

Song M et al. Cancer Res Treat 2019: in press

Additional recommendations

- HD-endoscopy with chromoendoscopy (CE) is better than HD-white-lightendoscopy alone (alternative: virtual CE).
- Patients with a diagnosis of "indefinite for dysplasia/neoplasia" should be promptly referred to an expert endoscopy center.
- H.p. heals nonatrophic chronic gastritis, may lead to regression of atrophic gastritis, and reduces the risk of gastric cancer in patients with nonatrophic and atrophic gastritis; → H.p. eradication recommended.
- In patients with established IM, H.p. eradication does not appear to significantly reduce the risk of gastric cancer, but reduces inflammation and atrophy; → H.p. eradication should be considered.
- H.p. eradication reduces risk of recurrence after endoscopic resection of gastric neoplasia; → H.p. eradication recommended.
- Patients with autoimmune gastritis may benefit from endoscopic follow-up every 3-5 years.

